"מילים מילים ואת משמעותן (המתמטית)"

השבוע נתקלתי במאמרו של שלומי חתוכה על הסיבות לכך שתלמידים רבים מעדיפים ללמוד מתמטיקה ברמות נמוכות ביחס לרמות המתאימות להם (ותודה להפניה בעמוד הפייסבוק של עידן טל). על פי שלומי הסיבה היא המאפיינים של הוראת המתמטיקה: תלמידים רבים בוחרים ללמוד ברמה מתמטית הנמוכה ביחס ליכולות שלהם ובחירה זו היא כהצבעת אי אמון במערכת החינוך.

וכך כותב שלומי: "אם המורה בבית הספר אינו מספיק טוב, אין לתלמיד סיכוי רב להצליח. וטוב פירושו שהמורה אינו רק צריך לדעת את החומר על בוריו, אלא צריך גם לדעת לפשט ולהעביר אותו בצורה ההגיונית וגם היצירתית ביותר….העבודה העיקרית היא לאו דווקא להתחיל בלימוד מתמטיקה, אלא להחדיר בתלמיד אמונה וביטחון, בעיקר לפזר את החשש והפחד, ולהבין כי הדרך לשכל עוברת אצל ילדים דרך הלב בטח במקצוע ידוע לשמצה עד כדי כך שהפך להיות אימת המקצועות".

המילים האמיצות הללו, שאני מסכים עימם בכל ליבי, התאימו למחשבות שיש לי בעקבות ספר שאני קורא לאחרונה. הספר, Enlightening Symbols: A Short History of Mathematical Notation and Its Hidden Powers שנכתב על ידי Joseph Mazur, מתאר את ההתפתחות של הסמלים במתמטיקה, ואת הכתיבה הסימבולית, מאז ראשית ימיה. בניגוד לספרי היסטוריה אחרים של התפתחות המתמטיקה (כמו זה של בנו ארבל ז"ל),  ספר זה מתמקד אך ורק בסימולים המתמטיים – כיצד התפתחו, מדוע התפתחו וכיצד השפיעו על המתמטיקה כתחום ידע.

הספר מומלץ מאוד למי שמתעניין בנושאים אלה. הוא קריא ומעניין. הוא מתאר באופן מרתק כיצד כניסתם של הסימולים המתמטים אותם אנו מכירים היטב שינו את האופן בו עשו וחשבו מתמטיקה עד להופעתם.

המתמטיקה  היא בכלל מדע מילולי

להמשיך לקרוא

פונקציות, נקודות, גרפים – על חשיבות הקשר בין ייצוגים שונים

אחד הקשיים בהם נתקלים תלמידים הוא לזהות את הקשרים בין הנושאים והתחומים השונים של המתמטיקה שנלמדים בבית הספר. הקושי הזה נובע, בין השאר, משום שמלמדים את כל התלמידים באופן דומה, מבלי להתייחס למאפיינים האישיים של כל תלמיד. כתבתי על כך בסקירה של ממצאי המחקר של פיז"ה באחד הפוסטים הקודמים.

מבין כל הקשרים הקיימים, אחד הקשרים הבולטים – מצד אחד – והמוזנחים – מצד שני – הוא הקשר בין פונקציות וייצוגיהן הגרפים.

לימוד מתמטיקה בהקשרים שונים, ובאמצעים מגוונים, הוא חשוב. הוא חשוב כי הוא מאפשר לתלמידים להבין את החומר באופן שבו הם מבינים אותו טוב ביותר. הוא חשוב כי הוא מייצר אצל התלמידים ביטחון עצמי. הוא חשוב כי הוא מבנה את הבסיס ללמידה עמוקה ומשמעותית בהמשך. אלו הם העקרונות של תפיסת ה- Growth Mindset (למישהו יש תרגום מוצלח לעברית?) שצוברת תאוצה בארה"ב (לא רק במתמטיקה אלא כתפיסה של מקצוע ההוראה).

לכן, חשוב ללמד גרפים ואת הקשר שלהם לפונקציות, נקודות על מערכת צירים ואת הקשר שלהם לגרפים, וכדומה.

דן מאייר מתייחס לנקודה זו באחד הפוסטים האחרונים שלו. הוא מציג מטלה מעניינת המדגישה את הקשר בין קו ישר, נקודות וייצוג אלגברי.

הפוסט הזה הזכיר לי שאני עושה משהו דומה (אך שונה) עם הכיתה שלי אז החלטתי לשתף אתכם בו (תודה דן!).

הרעיון של המשימה הבאה הוא להציג את הקשר בין פונקציה, אוסף נקודות, והתיאור הגרפי של הפונקציה. אפשר לשלב אותו בכל שלב של למידה אם כי לדעתי לא כדאי להביא אותו בשלב מוקדם מדי אלא רק לאחר שהתלמידים התנסו כבר בייצוגים השונים. הוא מתאים גם לתלמידים שמכירים רק משוואות מהמעלה הראשונה אך בהחלט גם לתלמידים המכירים משוואות ממעלות גבוהות יותר.

להמשיך לקרוא